Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Alex Plotkowski
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Tomonori Saito
- Ethan Self
- James A Haynes
- Jaswinder Sharma
- Robert Sacci
- Ryan Dehoff
- Sergiy Kalnaus
- Sumit Bahl
- Adam Stevens
- Alexander I Wiechert
- Alexey Serov
- Alice Perrin
- Amanda Musgrove
- Amit K Naskar
- Andres Marquez Rossy
- Anisur Rahman
- Anna M Mills
- Benjamin Manard
- Brian Post
- Chanho Kim
- Charles F Weber
- Christopher Fancher
- Costas Tsouris
- Dean T Pierce
- Georgios Polyzos
- Gerry Knapp
- Gordon Robertson
- Govindarajan Muralidharan
- Ilias Belharouak
- Isaac Sikkema
- Jay Reynolds
- Jeff Brookins
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Jovid Rakhmonov
- Jun Yang
- Khryslyn G Araño
- Kunal Mondal
- Logan Kearney
- Mahim Mathur
- Matthew S Chambers
- Matt Vick
- Michael Toomey
- Mingyan Li
- Nancy Dudney
- Nicholas Richter
- Nihal Kanbargi
- Oscar Martinez
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Rose Montgomery
- Sam Hollifield
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Thomas R Muth
- Vandana Rallabandi
- Venugopal K Varma
- Vera Bocharova
- William Peter
- Xiang Lyu
- Ying Yang
- Yukinori Yamamoto

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.