Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Kevin M Roccapriore
- Kyle Kelley
- Lawrence {Larry} M Anovitz
- Maxim A Ziatdinov
- Michelle Lehmann
- Olga S Ovchinnikova
- Tomonori Saito
- Costas Tsouris
- Ethan Self
- Gs Jung
- Gyoung Gug Jang
- Jaswinder Sharma
- Kashif Nawaz
- Radu Custelcean
- Robert Sacci
- Sergiy Kalnaus
- Stephen Jesse
- Alexander I Wiechert
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- An-Ping Li
- Andrew G Stack
- Andrew Lupini
- Anisur Rahman
- Anna M Mills
- Anton Ievlev
- Arpan Biswas
- Bogdan Dryzhakov
- Brian Fricke
- Chanho Kim
- Christopher Rouleau
- Debangshu Mukherjee
- Felipe Polo Garzon
- Georgios Polyzos
- Gerd Duscher
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ilias Belharouak
- Ivan Vlassiouk
- Jamieson Brechtl
- Jewook Park
- Jong K Keum
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Kai Li
- Khryslyn G Araño
- Kyle Gluesenkamp
- Liam Collins
- Logan Kearney
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Matthew S Chambers
- Md Inzamam Ul Haque
- Michael Toomey
- Mina Yoon
- Nancy Dudney
- Neus Domingo Marimon
- Nickolay Lavrik
- Nihal Kanbargi
- Ondrej Dyck
- Peng Yang
- Saban Hus
- Sai Krishna Reddy Adapa
- Sai Mani Prudhvi Valleti
- Steven Randolph
- Sumner Harris
- Utkarsh Pratiush
- Vera Bocharova
- Xiang Lyu
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.