Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Ali Riza Ekti
- Costas Tsouris
- Hongbin Sun
- Kashif Nawaz
- Prashant Jain
- Raymond Borges Hink
- Stephen Jesse
- Aaron Werth
- Aaron Wilson
- Alexander I Wiechert
- An-Ping Li
- Andrew F May
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Ben Garrison
- Benjamin Manard
- Bogdan Dryzhakov
- Brad Johnson
- Brandon A Wilson
- Brian Fricke
- Burak Ozpineci
- Callie Goetz
- Charles F Weber
- Christopher Hobbs
- Christopher Rouleau
- Debangshu Mukherjee
- Eddie Lopez Honorato
- Elizabeth Piersall
- Emilio Piesciorovsky
- Emrullah Aydin
- Fred List III
- Gary Hahn
- Gerd Duscher
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- Hsin Wang
- Huixin (anna) Jiang
- Ian Greenquist
- Ilia N Ivanov
- Ilias Belharouak
- Isaac Sikkema
- Isabelle Snyder
- Ivan Vlassiouk
- Jamieson Brechtl
- Jewook Park
- Joanna Mcfarlane
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Kai Li
- Keith Carver
- Kunal Mondal
- Kyle Gluesenkamp
- Liam Collins
- Mahim Mathur
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Matt Kurley III
- Matt Vick
- Md Inzamam Ul Haque
- Mike Zach
- Mina Yoon
- Mingyan Li
- Mostak Mohammad
- Nate See
- N Dianne Ezell
- Nedim Cinbiz
- Neus Domingo Marimon
- Nickolay Lavrik
- Nils Stenvig
- Nithin Panicker
- Omer Onar
- Ondrej Dyck
- Oscar Martinez
- Ozgur Alaca
- Peter L Fuhr
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Radu Custelcean
- Richard Howard
- Rodney D Hunt
- Rose Montgomery
- Ruhul Amin
- Ryan Heldt
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sam Hollifield
- Steven Randolph
- Sumner Harris
- Thomas Butcher
- Thomas R Muth
- Tyler Gerczak
- Ugur Mertyurek
- Utkarsh Pratiush
- Vandana Rallabandi
- Venugopal K Varma
- Vishaldeep Sharma
- Vittorio Badalassi
- Yarom Polsky
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.