Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Ali Abouimrane
- Kashif Nawaz
- Ruhul Amin
- Stephen Jesse
- Stephen M Killough
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Bogdan Dryzhakov
- Brian Fricke
- Bryan Maldonado Puente
- Christopher Rouleau
- Corey Cooke
- Costas Tsouris
- David L Wood III
- Debangshu Mukherjee
- Diana E Hun
- Georgios Polyzos
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Hongbin Sun
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jamieson Brechtl
- Jaswinder Sharma
- Jewook Park
- Jong K Keum
- Junbin Choi
- Kai Li
- Kyle Gluesenkamp
- Liam Collins
- Lu Yu
- Mahshid Ahmadi-Kalinina
- Marm Dixit
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Nolan Hayes
- Ondrej Dyck
- Peter Wang
- Philip Boudreaux
- Pradeep Ramuhalli
- Radu Custelcean
- Ryan Kerekes
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sally Ghanem
- Steven Randolph
- Sumner Harris
- Utkarsh Pratiush
- Yaocai Bai
- Zhijia Du
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.