Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate
(128)
- User Facilities
(27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Tomonori Saito
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Andrzej Nycz
- Chris Masuo
- Ethan Self
- Jaswinder Sharma
- Luke Meyer
- Robert Sacci
- Sergiy Kalnaus
- William Carter
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alexey Serov
- Alex Walters
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Bekki Mills
- Bogdan Dryzhakov
- Bruce Hannan
- Chanho Kim
- Christopher Rouleau
- Costas Tsouris
- Dave Willis
- Felipe Polo Garzon
- Georgios Polyzos
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Ilias Belharouak
- Ivan Vlassiouk
- John Wenzel
- Jong K Keum
- Joshua Vaughan
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Keju An
- Khryslyn G Araño
- Kyle Kelley
- Logan Kearney
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Matthew S Chambers
- Michael Toomey
- Mina Yoon
- Nancy Dudney
- Nihal Kanbargi
- Peng Yang
- Peter Wang
- Polad Shikhaliev
- Radu Custelcean
- Sai Krishna Reddy Adapa
- Shannon M Mahurin
- Steven Randolph
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Vasilis Tzoganis
- Vasiliy Morozov
- Vera Bocharova
- Victor Fanelli
- Vladislav N Sedov
- Xiang Lyu
- Yacouba Diawara
- Yun Liu

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.