Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities
(27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- William Carter
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- Bekki Mills
- Bogdan Dryzhakov
- Bruce Hannan
- Callie Goetz
- Christopher Hobbs
- Christopher Rouleau
- Costas Tsouris
- Dave Willis
- Eddie Lopez Honorato
- Fred List III
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Ivan Vlassiouk
- John Wenzel
- Jong K Keum
- Joshua Vaughan
- Keith Carver
- Keju An
- Kyle Kelley
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Matt Kurley III
- Mina Yoon
- Peter Wang
- Polad Shikhaliev
- Radu Custelcean
- Richard Howard
- Rodney D Hunt
- Ryan Heldt
- Shannon M Mahurin
- Steven Randolph
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Thomas Butcher
- Tomonori Saito
- Tyler Gerczak
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladislav N Sedov
- Yacouba Diawara
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Neutron beams are used around the world to study materials for various purposes.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.