Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Isabelle Snyder
- Emilio Piesciorovsky
- Aaron Werth
- Aaron Wilson
- Adam Siekmann
- Alexander I Kolesnikov
- Alexei P Sokolov
- Ali Riza Ekti
- Bekki Mills
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Elizabeth Piersall
- Eve Tsybina
- Gary Hahn
- James Klett
- John Lindahl
- John Wenzel
- Keju An
- Mark Loguillo
- Matthew B Stone
- Nils Stenvig
- Ozgur Alaca
- Raymond Borges Hink
- Shannon M Mahurin
- Subho Mukherjee
- Tao Hong
- Tomonori Saito
- Tony Beard
- Victor Fanelli
- Viswadeep Lebakula
- Vivek Sujan
- Yarom Polsky

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Neutron beams are used around the world to study materials for various purposes.

This disclosure introduces an innovative tool that capitalizes on historical data concerning the carbon intensity of the grid, distinct to each electric zone.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

A novel system for validating intelligent electronic devices (IEDs) in power systems using real-time simulation, reducing costs by eliminating amplifiers.