Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) National Security Sciences Directorate (17)
Researcher
- Amit K Naskar
- Isabelle Snyder
- Sam Hollifield
- Chad Steed
- Emilio Piesciorovsky
- Jaswinder Sharma
- Junghoon Chae
- Logan Kearney
- Michael Toomey
- Mingyan Li
- Nihal Kanbargi
- Travis Humble
- Aaron Myers
- Aaron Werth
- Aaron Wilson
- Adam Siekmann
- Alexander I Wiechert
- Ali Passian
- Ali Riza Ekti
- Arit Das
- Benjamin L Doughty
- Benjamin Manard
- Brian Weber
- Charles F Weber
- Charlie Cook
- Christopher Bowland
- Christopher Hershey
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Derek Dwyer
- Edgar Lara-Curzio
- Elizabeth Piersall
- Eve Tsybina
- Felix L Paulauskas
- Frederic Vautard
- Gary Hahn
- Harper Jordan
- Holly Humphrey
- Isaac Sikkema
- James Klett
- Jason Jarnagin
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Jonathan Willocks
- Joseph Olatt
- Justin Cazares
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Louise G Evans
- Luke Koch
- Mahim Mathur
- Mark Provo II
- Mary A Adkisson
- Matt Larson
- Matt Vick
- Mengdawn Cheng
- Nance Ericson
- Nils Stenvig
- Oscar Martinez
- Ozgur Alaca
- Paula Cable-Dunlap
- Raymond Borges Hink
- Richard L. Reed
- Robert E Norris Jr
- Rob Root
- Samudra Dasgupta
- Santanu Roy
- Srikanth Yoginath
- Subho Mukherjee
- Sumit Gupta
- T Oesch
- Tony Beard
- Uvinduni Premadasa
- Vandana Rallabandi
- Varisara Tansakul
- Vera Bocharova
- Viswadeep Lebakula
- Vivek Sujan
- Yarom Polsky

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.