Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) National Security Sciences Directorate (17)
Researcher
- Omer Onar
- Subho Mukherjee
- Mostak Mohammad
- Vandana Rallabandi
- Ali Passian
- Erdem Asa
- Shajjad Chowdhury
- Vivek Sujan
- Burak Ozpineci
- Emrullah Aydin
- Jon Wilkins
- Joseph Chapman
- Nicholas Peters
- Sam Hollifield
- Chad Steed
- Gui-Jia Su
- Hsuan-Hao Lu
- Joseph Lukens
- Junghoon Chae
- Mingyan Li
- Muneer Alshowkan
- Travis Humble
- Veda Prakash Galigekere
- Aaron Myers
- Aaron Werth
- Adam Siekmann
- Alexander I Wiechert
- Ali Riza Ekti
- Anees Alnajjar
- Benjamin Manard
- Brian Weber
- Brian Williams
- Charles F Weber
- Charlie Cook
- Christopher Hershey
- Claire Marvinney
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Derek Dwyer
- Emilio Piesciorovsky
- Eve Tsybina
- Gary Hahn
- Harper Jordan
- Isaac Sikkema
- Isabelle Snyder
- James Klett
- Jason Jarnagin
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Jonathan Willocks
- Joseph Olatt
- Justin Cazares
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Lingxiao Xue
- Louise G Evans
- Luke Koch
- Mahim Mathur
- Mariam Kiran
- Mark Provo II
- Mary A Adkisson
- Matt Larson
- Matt Vick
- Mengdawn Cheng
- Nance Ericson
- Oscar Martinez
- Paula Cable-Dunlap
- Rafal Wojda
- Raymond Borges Hink
- Richard L. Reed
- Rob Root
- Samudra Dasgupta
- Srikanth Yoginath
- T Oesch
- Tony Beard
- Varisara Tansakul
- Viswadeep Lebakula
- Yarom Polsky

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

Induction cooktops are becoming popular; however, a limitation is that compatible cookware is required. This is a significant barrier to its adoption.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.