Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Information Technology Services Directorate (2)
Researcher
- William Carter
- Alex Roschli
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Luke Meyer
- Adam Stevens
- Alexander I Wiechert
- Alex Walters
- Amy Elliott
- Benjamin Manard
- Cameron Adkins
- Charles F Weber
- Costas Tsouris
- Derek Dwyer
- Erin Webb
- Evin Carter
- Isha Bhandari
- Jason Jarnagin
- Jeremy Malmstead
- Joanna Mcfarlane
- Jonathan Willocks
- Joshua Vaughan
- Kevin Spakes
- Kitty K Mccracken
- Liam White
- Lilian V Swann
- Louise G Evans
- Mark Provo II
- Matt Vick
- Mengdawn Cheng
- Michael Borish
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Peter Wang
- Rangasayee Kannan
- Richard L. Reed
- Rob Root
- Roger G Miller
- Ryan Dehoff
- Sam Hollifield
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Tyler Smith
- Vandana Rallabandi
- William Peter
- Xianhui Zhao
- Yukinori Yamamoto

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.