Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- (-) Isotope Science and Enrichment Directorate (6)
- (-) User Facilities (27)
Researcher
- Rama K Vasudevan
- Ryan Dehoff
- Sergei V Kalinin
- Yongtao Liu
- Alex Plotkowski
- Amit Shyam
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Srikanth Yoginath
- Alice Perrin
- Anees Alnajjar
- James A Haynes
- James J Nutaro
- Kashif Nawaz
- Michael Kirka
- Mike Zach
- Pratishtha Shukla
- Sergiy Kalnaus
- Stephen Jesse
- Sudip Seal
- Sumit Bahl
- Vincent Paquit
- Ying Yang
- Adam Stevens
- Ahmed Hassen
- Ali Passian
- Amir K Ziabari
- An-Ping Li
- Andres Marquez Rossy
- Andrew F May
- Andrew Lupini
- Anton Ievlev
- Arpan Biswas
- Ben Garrison
- Beth L Armstrong
- Blane Fillingim
- Bogdan Dryzhakov
- Brad Johnson
- Brian Fricke
- Brian Post
- Bruce Moyer
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Christopher Rouleau
- Clay Leach
- Costas Tsouris
- Craig A Bridges
- Craig Blue
- Daniel Rasmussen
- David Nuttall
- Debangshu Mukherjee
- Debjani Pal
- Georgios Polyzos
- Gerd Duscher
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Hoyeon Jeon
- Hsin Wang
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Haley
- James Klett
- Jamieson Brechtl
- Jaswinder Sharma
- Jeffrey Einkauf
- Jennifer M Pyles
- Jewook Park
- Joel Asiamah
- Joel Dawson
- John Lindahl
- Jong K Keum
- Jovid Rakhmonov
- Justin Griswold
- Kai Li
- Kuntal De
- Kyle Gluesenkamp
- Laetitia H Delmau
- Liam Collins
- Luke Sadergaski
- Mahshid Ahmadi-Kalinina
- Mariam Kiran
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mina Yoon
- Nageswara Rao
- Nance Ericson
- Nancy Dudney
- Nedim Cinbiz
- Neus Domingo Marimon
- Nicholas Richter
- Nickolay Lavrik
- Ondrej Dyck
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Philip Bingham
- Radu Custelcean
- Rangasayee Kannan
- Roger G Miller
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sandra Davern
- Sarah Graham
- Sheng Dai
- Singanallur Venkatakrishnan
- Steven Randolph
- Sudarsanam Babu
- Sumner Harris
- Sunyong Kwon
- Tony Beard
- Utkarsh Pratiush
- Varisara Tansakul
- Vipin Kumar
- Vlastimil Kunc
- William Peter
- Xiaobing Liu
- Yan-Ru Lin
- Yukinori Yamamoto
- Zhiming Gao

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.