Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Alex Plotkowski
- Amit Shyam
- Andrzej Nycz
- Chris Masuo
- James A Haynes
- Luke Meyer
- Sumit Bahl
- William Carter
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Roschli
- Alex Walters
- Alice Perrin
- Andres Marquez Rossy
- Bekki Mills
- Bruce Hannan
- Dave Willis
- Erin Webb
- Evin Carter
- Gerry Knapp
- Jeremy Malmstead
- John Wenzel
- Joshua Vaughan
- Jovid Rakhmonov
- Keju An
- Kitty K Mccracken
- Loren L Funk
- Luke Chapman
- Mark Loguillo
- Matthew B Stone
- Mengdawn Cheng
- Nicholas Richter
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Peeyush Nandwana
- Peter Wang
- Polad Shikhaliev
- Ryan Dehoff
- Shannon M Mahurin
- Soydan Ozcan
- Sunyong Kwon
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Tyler Smith
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladislav N Sedov
- Xianhui Zhao
- Yacouba Diawara
- Ying Yang
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

Neutron beams are used around the world to study materials for various purposes.