Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Venugopal K Varma
- Mahabir Bhandari
- Mike Zach
- Sergei V Kalinin
- Stephen Jesse
- Adam Aaron
- An-Ping Li
- Andrew F May
- Andrew Lupini
- Anton Ievlev
- Ben Garrison
- Bogdan Dryzhakov
- Brad Johnson
- Bruce Moyer
- Charles D Ottinger
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Govindarajan Muralidharan
- Hoyeon Jeon
- Hsin Wang
- Huixin (anna) Jiang
- James Klett
- Jamieson Brechtl
- Jeffrey Einkauf
- Jennifer M Pyles
- Jewook Park
- John Lindahl
- Justin Griswold
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Kuntal De
- Laetitia H Delmau
- Liam Collins
- Luke Sadergaski
- Marti Checa Nualart
- Maxim A Ziatdinov
- Nedim Cinbiz
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Padhraic L Mulligan
- Rose Montgomery
- Saban Hus
- Sandra Davern
- Sergey Smolentsev
- Steven J Zinkle
- Steven Randolph
- Thomas R Muth
- Tony Beard
- Yanli Wang
- Ying Yang
- Yongtao Liu
- Yutai Kato

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

The traditional window installation process involves many steps. These are becoming even more complex with newer construction requirements such as installation of windows over exterior continuous insulation walls.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.