Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Amit K Naskar
- Kevin M Roccapriore
- Kyle Kelley
- Maxim A Ziatdinov
- Olga S Ovchinnikova
- Jaswinder Sharma
- Kashif Nawaz
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Stephen Jesse
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arit Das
- Arpan Biswas
- Benjamin L Doughty
- Bogdan Dryzhakov
- Brian Fricke
- Bruce Moyer
- Christopher Bowland
- Christopher Rouleau
- Costas Tsouris
- Debangshu Mukherjee
- Debjani Pal
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gerd Duscher
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- Hoyeon Jeon
- Huixin (anna) Jiang
- Ilia N Ivanov
- Ivan Vlassiouk
- Jamieson Brechtl
- Jeffrey Einkauf
- Jennifer M Pyles
- Jewook Park
- Jong K Keum
- Justin Griswold
- Kai Li
- Kuntal De
- Kyle Gluesenkamp
- Laetitia H Delmau
- Liam Collins
- Luke Sadergaski
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Md Inzamam Ul Haque
- Mike Zach
- Mina Yoon
- Neus Domingo Marimon
- Nickolay Lavrik
- Ondrej Dyck
- Padhraic L Mulligan
- Radu Custelcean
- Robert E Norris Jr
- Saban Hus
- Sai Mani Prudhvi Valleti
- Sandra Davern
- Santanu Roy
- Steven Randolph
- Sumit Gupta
- Sumner Harris
- Utkarsh Pratiush
- Uvinduni Premadasa
- Vera Bocharova
- Zhiming Gao

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.