Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Physical Sciences Directorate (128)
- User Facilities
(27)
- (-) Neutron Sciences Directorate (11)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Andrzej Nycz
- Chris Masuo
- Luke Meyer
- Sergei V Kalinin
- Stephen Jesse
- William Carter
- Alexander I Kolesnikov
- Alexei P Sokolov
- Alex Walters
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Bekki Mills
- Bogdan Dryzhakov
- Bruce Hannan
- Bruce Moyer
- Dave Willis
- Debjani Pal
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jeffrey Einkauf
- Jennifer M Pyles
- Jewook Park
- John Wenzel
- Joshua Vaughan
- Justin Griswold
- Kai Li
- Kashif Nawaz
- Keju An
- Kevin M Roccapriore
- Kuntal De
- Laetitia H Delmau
- Liam Collins
- Loren L Funk
- Luke Chapman
- Luke Sadergaski
- Mark Loguillo
- Marti Checa Nualart
- Matthew B Stone
- Maxim A Ziatdinov
- Mike Zach
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Padhraic L Mulligan
- Peter Wang
- Polad Shikhaliev
- Saban Hus
- Sandra Davern
- Shannon M Mahurin
- Steven Randolph
- Sydney Murray III
- Tao Hong
- Theodore Visscher
- Tomonori Saito
- Vasilis Tzoganis
- Vasiliy Morozov
- Victor Fanelli
- Vladislav N Sedov
- Yacouba Diawara
- Yongtao Liu
- Yun Liu

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Neutron scattering experiments cover a large temperature range in which experimenters want to test their samples.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Neutron beams are used around the world to study materials for various purposes.